7.15 Level Set Methods for Simulation of Thin Film Growth
نویسندگان
چکیده
The level set method is a general approach to numerical computation for the motion of interfaces. Epitaxial growth of a thin film can be described by the evolution of island boundaries and step edges, so that the level set method is applicable to simulation of thin film growth. In layer-by-layer growth, for example, this includes motion of the island boundaries, merger or breakup of islands, and creation of new islands. A system of size 100× 100 nm may involve hundreds or even thousands of islands. Because it does not require smoothing and or discretization of individual island boundaries, the level set method can accurately and efficiently simulate the dynamics of a system of this size. Moreover, because it does not resolve individual hopping events on the terraces or island boundaries, the level set method can take longer time steps than those of an atomistic method such as kinetic Monte Carlo (KMC). Thus the level set approach can simulate some systems that are computationally intractable for KMC.
منابع مشابه
Level Set Methods for Simulation of Thin Film Growth
The level set method is a general approach to numerical computation for the motion of interfaces. Epitaxial growth of a thin film can be described by the evolution of island boundaries and step edges, so that the level set method is applicable to simulation of thin film growth. In layer-by-layer growth, for example, this includes motion of the island boundaries, merger or breakup of islands, an...
متن کاملSimulation of Fabrication toward High Quality Thin Films for Robotic Applications by Ionized Cluster Beam Deposition
The most commonly used method for the production of thin films is based on deposition of atoms or molecules onto a solid surface. One of the suitable method is to produce high quality metallic, semiconductor and organic thin film is Ionized cluster beam deposition (ICBD), which are used in electronic, robotic, optical, optoelectronic devices. Many important factors such as cluster size, cluster...
متن کاملGrowth, Characterization of Cu Nanoparticles Thin Film by Nd: YAG Laser Pulses Deposition
We report the growth and characterization of Cu nanoparticles thin film of on glass substrate by pulse laser deposition method. The Cu thin film prepared with different energy 50, 60, 70, and 80 mJ. The energy effect on the morphological, structural and optical properties were studied by AFM, XRD and UV-Visible spectrophotometer. Surface topography studied by atomic force microscopy revealed na...
متن کاملAtomic Simulation of Temperature Effect on the Mechanical Properties of Thin Films
The molecular dynamic technique was used to simulate the nano-indentation test on the thin films of silver, titanium, aluminum and copper which were coated on the silicone substrate. The mechanical properties of the selected thin films were studied in terms of the temperature. The temperature was changed from 193 K to 793 K with an increment of 100 K. To investigate the effect of temperature on...
متن کاملGeometric evolution laws for thin crystalline films: modeling and numerics
Geometrical evolution laws are widely used in continuum modeling of surface and interface motion in materials science. In this article, we first give a brief review of various kinds of geometrical evolution laws and their variational derivations, with an emphasis on strong anisotropy. We then survey some of the finite element based numerical methods for simulating the motion of interfaces focus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004